科學與數學在希臘和中國
希臘所有的科學發現中最了不起的就是發現了——或者用哲學家傑弗裏·勞埃德所說的,發現了自然本身。希臘人把自然定義為去掉人類及其文化的宇宙。盡管這對於我們來說是最顯而易見的,但是沒有其他文明觸及這一點。希臘人為什麽碰巧發現了自然,對此做出的一個貌似真實的解釋是,希臘人碰巧正在區分外部的客觀世界與內在的主觀世界。這種區分的產生是因為希臘人與其他人不同,對從傳統辯論中產生的主觀性有清楚的了解。除非你相信事實擺在那兒,你比我的理解更深刻,否則你勸我相信某個事物是毫無意義的。或許你可以強製我去做你想要我做的事,甚至強製我說“我相信你所做的一切”,但是除非你對一些事物的主觀解釋勝過我的理解,否則你是說服不了我的。
因此,實際上,客觀性來自主觀性——認知,主觀性和客觀性是對世界的不同體現,世界是獨立於主觀性或客觀性而存在的。這樣的認知或許對希臘人大有裨益,因為希臘處於商業交往的中心位置,他們經常會遇上與他們有著完全不同的世界觀的人們。相反,中國文化很早就統一了,相對來說,很少會有在哲學和宗教上觀點迥異的人。
希臘人對自然的認知使得他們有可能發明科學。中國人沒有發明科學,其部分原因是中國人缺乏好奇心,但是不管怎麽說,對自然沒有概念就阻礙了科學的發展。哲學家馮友蘭指出,如果沒有清楚的認識,心裏沒有與自然的某些方麵相對應而又不同的概念,“為什麽”這樣的問題也是難以提出的。
希臘人對比較醒目的物體及其屬性的關注使得他們沒能夠理解自然界最基本的因果關係。亞裏士多德解釋說,一塊石頭穿過空氣往下落是因為石頭具有“重量”這樣的屬性。但是,一塊木頭扔到水裏不會下沉而是浮在水麵上。亞裏士多德對這一現象做出的解釋則是因為木頭具有“浮力”這樣的屬性!在這兩個例子中,他關注的中心隻是物體本身,而根本就沒有注意該物體之外的力量也可能對其產生影響。但是中國人把世界看成是由連續不斷的相互作用的物質構成的,因此中國人看問題關注整個“領域”的複雜性,也就是說,把背景、環境作為整體來看待。事件總是在各種力量的綜合作用下產生,中國人的這種認識完全是靠直覺獲得的。因此,中國人在早於伽利略2000年前就認識到了“超距作用”這樣的規律。例如,中國人認識了磁性、聲學共振,並且知道月球的運動導致了潮汐的發生,這個問題曾經難倒過伽利略。
在中國西部的沙漠中,埋葬著身體高大、紅色頭發的高加索人模樣的屍體。令人驚異的是,這些屍體保存完好。他們在幾千年前發現了通往中國西域的路。除了長相與該地區的人不同,他們還有一個與眾不同的有趣之處。有跡象表明,他們中的許多人曾經做過外科手術。在中國的古代曆史中,手術是極為罕見的。
古代中國人不願意做手術是由於中國人對和諧與各種關係的看法,這是完全可以理解的。健康有賴於身體各種力量的平衡以及身體各部位的關係。身體各部位與身體其他部位之間的相互關係,對於中國人來說,過去存在,現在依然存在。為了對這種相互聯係的巨大網絡有個認識,請你看一看現代的針灸醫生眼中耳朵表麵的真皮和骨骼結構,同樣複雜的網絡描繪了耳朵與每個內部器官的關係。切除身體上發生功能障礙或患有疾病的部分對身體會有好處,這樣的看法沒有考慮這些部位與身體其他部位的關係。對於中國人來說,這樣思考問題,未免頭腦太過簡單了。相反,手術在許多西方國家已經盛行了幾千年。
中國人傾向於研究錯綜複雜的關係,這一點可以從東方現在依然存在看風水的習慣得到佐證。要蓋房子時,請風水先生看看風水,這很重要。風水先生要看地勢的高度、盛行的風向、房屋的朝向與各種水體的關係等各種各樣的因素,然後指出房子建在什麽地方比較好。在西方根本沒有這樣的習慣,但是中國香港最現代化的摩天大樓在開建之前肯定是看過風水了。
圖1–2 耳朵表麵的真皮和骨骼
中國人堅信事物是普遍聯係的,很顯然,背景的變化會引起物體的改變。因此,任何想精確地把事物歸類的企圖似乎對了解各種事件並無大礙。隻是,世界太錯綜複雜了,因而難以歸類或找到其規律,從而幫助我們了解事物,並控製它們。
中國人認識到磁場對了解物體的運動有很重要的作用,這是正確的,中國人對複雜性的認識也是正確的,但是中國人對範疇不感興趣,這就使得他們難以發現真正可以解釋各種事物的規律。希臘人有把一切過於簡單化的傾向,樂於對物體不存在的屬性做假想性的解釋,對物體進行歸類,這是把規律作用於物體所必需的,他們在這一點上的認識是正確的。因為規律有助於我們了解事物適用的最大限度,一種持續不斷的“向上的壓力”對事物進行高度抽象的概括,這樣規律就具有最大限度的適用範圍。這種對事物進行抽象的驅動力有時是有用的——雖然並不總是如此。
希臘人對範疇的推崇很快在科學方麵得到了回報,由於他們繼承了這種智慧,他們後來也在不斷得到這樣的回報。隻有希臘人對自然界進行了充分的劃分,使得人們擺脫了其他民族為單一分類體係構建的民間生態模式,最終建立了真正具有說服力的理論。
據說,一群與畢達格拉斯有關的數學家把一個人扔下了船,因為有人發現這個人泄露了無理數的醜聞,例如,2的平方根可以無限地寫下去,沒有可預見的形式:1.4142135……不管這個故事是真是假,可以肯定的是大多數希臘數學家根本不把無理數當作真正的數字來看待。希臘人生活在一個由孤立的微粒組成的世界中,無理數連續不斷、無限延伸的本質是如此難以理解,希臘的數學家很難正視這些數字。
另一方麵,希臘人通過矛盾論證,逐漸認識到2的平方根是無理數,為此他們感到很欣慰。
希臘人被矛盾的概念所吸引,甚至可以說是困擾。如果一個命題與另一個命題矛盾,那麽其中一個命題就要被否定。無矛盾的原則建立在命題邏輯的基礎上。為什麽是希臘人而不是其他人發明了邏輯,一個眾所周知的解釋是說在一個辯論占主導地位的社會,人們會漸漸認識到,根據定義,其結構導致矛盾的辯論是無效的。邏輯的基本規則,包括三段論,都是由亞裏士多德提出的。據說,他是因為在政治集會、市民辯論會上聽到那些蹩腳的辯論,一怒之下而發明了邏輯!要注意,邏輯分析是脫離背景而進行研究的希臘式傾向的延續。邏輯的運用剔除了陳述話語的意義而隻留下完整的結構。這就很容易判斷一個論證有效還是無效。當然了,就如現代東亞人所指出的,那種不顧及背景的分析法並非毫無危險。就如古代中國人一樣,他們所極力追求的是合理性而不是理性。避免走極端的訓誡就如避免自相矛盾的要求一樣,都是有益的原則。
公元前5世紀,中國哲學家墨子在邏輯思維的方向上向前邁進了重要的幾步,但是他的理論體係沒有成形,邏輯理論在中國夭折了。這隻是一個簡短的插曲,中國缺少的不僅是邏輯,還缺少矛盾律。印度確實有比較強的邏輯傳統,但是印度書籍的中譯本充滿了錯誤和誤解。盡管中國人在代數、算術方麵成就斐然,但是在立體幾何方麵建樹甚微,這是因為論證依賴形式邏輯,特別是矛盾的概念。(代數直到笛卡兒出現才變成是可演繹的。教育體製至今還保留著人們把代數和幾何當作獨立的學科來教授的痕跡。)
希臘人深切關注的是數學中的基本論證。其他民族知其然,唯有希臘人知其所以然。另一方麵,希臘的邏輯及其基本思想在提供機會的同時也造成了障礙。希臘人從來沒有零這個概念,零是代數和阿拉伯計數體係所必需的。零在希臘人的考慮範圍之內,但由於零代表了矛盾而受到排斥。零等同於不存在的東西,而不存在的東西不可能存在!對零的理解以及對無窮大、無窮小這些概念的理解最終不得不從東方引入。
中國人沒有發明邏輯,而是發明了辯證法。這種辯證法與黑格爾的辯證法不太一樣。在黑格爾的辯證法中,與正題相悖的是反題,這一矛盾由合題來解決,其推理的最終目標是解決矛盾,在這個意義上來說仍有些“攻擊性”。而中國的辯證法是通過矛盾來了解萬事萬物之間的關係,來超越或同化對立麵,或者吸收互相衝突但卻有啟發性的觀點。中國的知識傳統中根本不存在a與非a之間的對抗。相反,以道家的精神或陰陽學說來看,a實際上也暗含了非a的情況,或者很快就會向非a轉化。辯證思維從某種意義上講是邏輯思維的反麵。辯證思維不是尋求脫離背景而是在適當的背景下看待事物:事件的發生不是孤立的,而總是包含在有意義的整體當中,在這個整體當中各種因素不斷變化、不斷重組。孤立地思考一個物體或事件,把抽象的規則運用到這些物體或事件當中,就會走極端,得出錯誤的結論。中庸之道才是其論證的目標。
為什麽古希臘人和古代中國人,其思維習慣會有那麽大的差異呢?或者在某種程度上說,為什麽在知識分子身上會如此?也隻有這些知識分子是我們所知道的、過著精神生活的古人。為什麽一方麵要講社會形態與自我理解的“共鳴”,而另一方麵又談論哲學假設和科學方法呢?這些問題的答案涉及對當今東西方思維差異的理解。
希臘所有的科學發現中最了不起的就是發現了——或者用哲學家傑弗裏·勞埃德所說的,發現了自然本身。希臘人把自然定義為去掉人類及其文化的宇宙。盡管這對於我們來說是最顯而易見的,但是沒有其他文明觸及這一點。希臘人為什麽碰巧發現了自然,對此做出的一個貌似真實的解釋是,希臘人碰巧正在區分外部的客觀世界與內在的主觀世界。這種區分的產生是因為希臘人與其他人不同,對從傳統辯論中產生的主觀性有清楚的了解。除非你相信事實擺在那兒,你比我的理解更深刻,否則你勸我相信某個事物是毫無意義的。或許你可以強製我去做你想要我做的事,甚至強製我說“我相信你所做的一切”,但是除非你對一些事物的主觀解釋勝過我的理解,否則你是說服不了我的。
因此,實際上,客觀性來自主觀性——認知,主觀性和客觀性是對世界的不同體現,世界是獨立於主觀性或客觀性而存在的。這樣的認知或許對希臘人大有裨益,因為希臘處於商業交往的中心位置,他們經常會遇上與他們有著完全不同的世界觀的人們。相反,中國文化很早就統一了,相對來說,很少會有在哲學和宗教上觀點迥異的人。
希臘人對自然的認知使得他們有可能發明科學。中國人沒有發明科學,其部分原因是中國人缺乏好奇心,但是不管怎麽說,對自然沒有概念就阻礙了科學的發展。哲學家馮友蘭指出,如果沒有清楚的認識,心裏沒有與自然的某些方麵相對應而又不同的概念,“為什麽”這樣的問題也是難以提出的。
希臘人對比較醒目的物體及其屬性的關注使得他們沒能夠理解自然界最基本的因果關係。亞裏士多德解釋說,一塊石頭穿過空氣往下落是因為石頭具有“重量”這樣的屬性。但是,一塊木頭扔到水裏不會下沉而是浮在水麵上。亞裏士多德對這一現象做出的解釋則是因為木頭具有“浮力”這樣的屬性!在這兩個例子中,他關注的中心隻是物體本身,而根本就沒有注意該物體之外的力量也可能對其產生影響。但是中國人把世界看成是由連續不斷的相互作用的物質構成的,因此中國人看問題關注整個“領域”的複雜性,也就是說,把背景、環境作為整體來看待。事件總是在各種力量的綜合作用下產生,中國人的這種認識完全是靠直覺獲得的。因此,中國人在早於伽利略2000年前就認識到了“超距作用”這樣的規律。例如,中國人認識了磁性、聲學共振,並且知道月球的運動導致了潮汐的發生,這個問題曾經難倒過伽利略。
在中國西部的沙漠中,埋葬著身體高大、紅色頭發的高加索人模樣的屍體。令人驚異的是,這些屍體保存完好。他們在幾千年前發現了通往中國西域的路。除了長相與該地區的人不同,他們還有一個與眾不同的有趣之處。有跡象表明,他們中的許多人曾經做過外科手術。在中國的古代曆史中,手術是極為罕見的。
古代中國人不願意做手術是由於中國人對和諧與各種關係的看法,這是完全可以理解的。健康有賴於身體各種力量的平衡以及身體各部位的關係。身體各部位與身體其他部位之間的相互關係,對於中國人來說,過去存在,現在依然存在。為了對這種相互聯係的巨大網絡有個認識,請你看一看現代的針灸醫生眼中耳朵表麵的真皮和骨骼結構,同樣複雜的網絡描繪了耳朵與每個內部器官的關係。切除身體上發生功能障礙或患有疾病的部分對身體會有好處,這樣的看法沒有考慮這些部位與身體其他部位的關係。對於中國人來說,這樣思考問題,未免頭腦太過簡單了。相反,手術在許多西方國家已經盛行了幾千年。
中國人傾向於研究錯綜複雜的關係,這一點可以從東方現在依然存在看風水的習慣得到佐證。要蓋房子時,請風水先生看看風水,這很重要。風水先生要看地勢的高度、盛行的風向、房屋的朝向與各種水體的關係等各種各樣的因素,然後指出房子建在什麽地方比較好。在西方根本沒有這樣的習慣,但是中國香港最現代化的摩天大樓在開建之前肯定是看過風水了。
圖1–2 耳朵表麵的真皮和骨骼
中國人堅信事物是普遍聯係的,很顯然,背景的變化會引起物體的改變。因此,任何想精確地把事物歸類的企圖似乎對了解各種事件並無大礙。隻是,世界太錯綜複雜了,因而難以歸類或找到其規律,從而幫助我們了解事物,並控製它們。
中國人認識到磁場對了解物體的運動有很重要的作用,這是正確的,中國人對複雜性的認識也是正確的,但是中國人對範疇不感興趣,這就使得他們難以發現真正可以解釋各種事物的規律。希臘人有把一切過於簡單化的傾向,樂於對物體不存在的屬性做假想性的解釋,對物體進行歸類,這是把規律作用於物體所必需的,他們在這一點上的認識是正確的。因為規律有助於我們了解事物適用的最大限度,一種持續不斷的“向上的壓力”對事物進行高度抽象的概括,這樣規律就具有最大限度的適用範圍。這種對事物進行抽象的驅動力有時是有用的——雖然並不總是如此。
希臘人對範疇的推崇很快在科學方麵得到了回報,由於他們繼承了這種智慧,他們後來也在不斷得到這樣的回報。隻有希臘人對自然界進行了充分的劃分,使得人們擺脫了其他民族為單一分類體係構建的民間生態模式,最終建立了真正具有說服力的理論。
據說,一群與畢達格拉斯有關的數學家把一個人扔下了船,因為有人發現這個人泄露了無理數的醜聞,例如,2的平方根可以無限地寫下去,沒有可預見的形式:1.4142135……不管這個故事是真是假,可以肯定的是大多數希臘數學家根本不把無理數當作真正的數字來看待。希臘人生活在一個由孤立的微粒組成的世界中,無理數連續不斷、無限延伸的本質是如此難以理解,希臘的數學家很難正視這些數字。
另一方麵,希臘人通過矛盾論證,逐漸認識到2的平方根是無理數,為此他們感到很欣慰。
希臘人被矛盾的概念所吸引,甚至可以說是困擾。如果一個命題與另一個命題矛盾,那麽其中一個命題就要被否定。無矛盾的原則建立在命題邏輯的基礎上。為什麽是希臘人而不是其他人發明了邏輯,一個眾所周知的解釋是說在一個辯論占主導地位的社會,人們會漸漸認識到,根據定義,其結構導致矛盾的辯論是無效的。邏輯的基本規則,包括三段論,都是由亞裏士多德提出的。據說,他是因為在政治集會、市民辯論會上聽到那些蹩腳的辯論,一怒之下而發明了邏輯!要注意,邏輯分析是脫離背景而進行研究的希臘式傾向的延續。邏輯的運用剔除了陳述話語的意義而隻留下完整的結構。這就很容易判斷一個論證有效還是無效。當然了,就如現代東亞人所指出的,那種不顧及背景的分析法並非毫無危險。就如古代中國人一樣,他們所極力追求的是合理性而不是理性。避免走極端的訓誡就如避免自相矛盾的要求一樣,都是有益的原則。
公元前5世紀,中國哲學家墨子在邏輯思維的方向上向前邁進了重要的幾步,但是他的理論體係沒有成形,邏輯理論在中國夭折了。這隻是一個簡短的插曲,中國缺少的不僅是邏輯,還缺少矛盾律。印度確實有比較強的邏輯傳統,但是印度書籍的中譯本充滿了錯誤和誤解。盡管中國人在代數、算術方麵成就斐然,但是在立體幾何方麵建樹甚微,這是因為論證依賴形式邏輯,特別是矛盾的概念。(代數直到笛卡兒出現才變成是可演繹的。教育體製至今還保留著人們把代數和幾何當作獨立的學科來教授的痕跡。)
希臘人深切關注的是數學中的基本論證。其他民族知其然,唯有希臘人知其所以然。另一方麵,希臘的邏輯及其基本思想在提供機會的同時也造成了障礙。希臘人從來沒有零這個概念,零是代數和阿拉伯計數體係所必需的。零在希臘人的考慮範圍之內,但由於零代表了矛盾而受到排斥。零等同於不存在的東西,而不存在的東西不可能存在!對零的理解以及對無窮大、無窮小這些概念的理解最終不得不從東方引入。
中國人沒有發明邏輯,而是發明了辯證法。這種辯證法與黑格爾的辯證法不太一樣。在黑格爾的辯證法中,與正題相悖的是反題,這一矛盾由合題來解決,其推理的最終目標是解決矛盾,在這個意義上來說仍有些“攻擊性”。而中國的辯證法是通過矛盾來了解萬事萬物之間的關係,來超越或同化對立麵,或者吸收互相衝突但卻有啟發性的觀點。中國的知識傳統中根本不存在a與非a之間的對抗。相反,以道家的精神或陰陽學說來看,a實際上也暗含了非a的情況,或者很快就會向非a轉化。辯證思維從某種意義上講是邏輯思維的反麵。辯證思維不是尋求脫離背景而是在適當的背景下看待事物:事件的發生不是孤立的,而總是包含在有意義的整體當中,在這個整體當中各種因素不斷變化、不斷重組。孤立地思考一個物體或事件,把抽象的規則運用到這些物體或事件當中,就會走極端,得出錯誤的結論。中庸之道才是其論證的目標。
為什麽古希臘人和古代中國人,其思維習慣會有那麽大的差異呢?或者在某種程度上說,為什麽在知識分子身上會如此?也隻有這些知識分子是我們所知道的、過著精神生活的古人。為什麽一方麵要講社會形態與自我理解的“共鳴”,而另一方麵又談論哲學假設和科學方法呢?這些問題的答案涉及對當今東西方思維差異的理解。