“你做了這個提琴,費了心思來到我這裏,有什麽需要幫忙的事情嗎?”蔡邕也是知道秦誼有多企圖,如果這個年輕人有什麽難處的話,隻要不過分,蔡邕願意幫助他。
作為天下第一名士,蔡邕同樣也是一個世家子弟,他們陳留蔡氏的親朋故舊遍布天下,隻要不是什麽通天難事,蔡邕都夠幫助擺平。
如果秦誼要是求財或是求名,那也是小事情。要是求財,陳留蔡氏家大業大,蔡邕本人雖然仕途不順,但是給人寫碑文的潤筆費可是不菲,可以說是窮得隻剩下錢了;要是求名,作為天下第一名士的蔡邕,隨便稱讚一句,便能夠立刻讓被稱讚者身家倍增。
“教……蔡公,我想學算學!”
有那麽一瞬間,這段時間費心盡力鑽營投機卻是屢遭白眼的秦誼差點兒三井壽附體,不過好在沒有想起《直到世界終結》的bgm,要不然秦誼恐怕直接跪在蔡邕麵前了。
“學算學!?”
當聽了秦誼這個要求之後,蔡氏父女均是非常吃驚,這些年來找蔡邕拜師的人多了去了,蔡邕也是收了不少學生,比如說日後建安七子之一的阮瑀便是其中的佼佼者。
但是這些蔡邕的學生,基本上都是跟著蔡邕學習經學、書法、辭賦、,跟著蔡邕學習算學的可是基本上沒有。所以秦誼的出現,也是讓蔡氏父女都很吃驚。
當聽了秦誼的求學宣言之後,蔡琰便忍不住打量起秦誼來,因為她知道眼前這個男人,很有可能撓到了父親的癢處。
作為當世知名數學家,蔡邕也希望自身的數學知識能夠傳下去,可惜卻是一直都沒有遇到合適的人選。才資卓絕之輩蔡邕不是沒遇到過,但是這些人還是對蔡邕其他的學識更感興趣。於是乎蔡邕的各項絕藝,基本上都有了傳人,隻有一手的算學卻是一直沒有找到合適的傳人。
尤其是年前,蔡邕老友劉洪的學生徐嶽,因為協助何顒上計的緣故來到雒陽,並按照老師的吩咐過來拜見蔡邕。
席間蔡邕考究了一下徐嶽的學問,發現他已經得到老友劉洪的真傳,更是讓蔡邕心中難過,已經五十多歲的他再不抓緊時間找傳人,那麽這一身的算學可能就要失傳了。
於是乎過年這段時間裏麵,蔡邕就開始折騰起自己的女兒來,隻是希望自己的算學能夠後繼有人。
隻可惜蔡邕的兩個女兒可能都隻遺傳到了老爹一半的基因,明顯都是些文藝女青年的體質,一開始還能夠學得懂老蔡的學問,但是隨著問題深入之後,便有些力不從心了。
老蔡心裏麵也是明白,女兒的天分雖然比不上自己,但隻要肯下功夫認真寫,不說在自己的基礎上有所發展青出於藍而勝於藍,像劉洪的學生徐嶽一樣把自己的本事給吃透還是能做到的。
隻是兩個女兒卻並不喜歡算學,缺乏那種精益求精的追求,那些入門知識憑借著各自的小聰明都很容易掌握,然後上了難度之後兩個女兒又不肯下苦功夫,自然出不了成績。
現在看到有人主動要跟父親學習算學,蔡琰也是開心不少,忍不住也是打量起秦誼來。秦誼本身賣相便不錯,再加上後世的精神灌注,倒是有一種不同於當世士子的精神氣質。
隻是蔡琰卻依舊不看好秦誼,因為算學一途實在太難了,蔡琰天資雖然及不上蔡邕,但也是出類拔萃的那種人物,到現在也隻不過將蔡邕教學用的《九章算術》給學完,離精通還是有著一定的差距。自視甚高的蔡琰並不覺得,隨便過來一個士人便能有自己的水平,這樣的人如何能夠繼承父親的衣缽。
“嗬嗬,那你基礎怎樣?”看到有人主動要向自己學算學,蔡邕心裏麵也是很高興,但是同樣沒有看好秦誼,所以想要先摸摸底。
“九章之術已經能夠熟練掌握,甚至還有其他所得!”而秦誼也是非常傲然的說道。
金庸小說中帶九的武功都非常厲害,什麽九陰真經,九陽真經,獨孤九劍之類的,而《九章算術》便是當今數學界的頂級秘籍。秦誼這個回答可以說是非常厲害,放武俠小說中那就是九陰九陽之類的武功我已經學會了,甚至還研究出了一些其他並不遜色武功。放眼天下,恐怕也就隻有蔡邕、劉洪等幾個學術巨頭敢這樣說了。
秦誼敢這樣說大話,也是有著自己的資本,就在過年這段時間裏麵,秦誼從大將軍府圖書館裏把官方修訂過的《九章算術》給借了出來,在製作曆史上第一個二胡——應該是提琴的間歇裏,把《九章算術》給通讀了一遍。
原來後世的初中生基本上便能掌握《九章算術》的大部分學問,什麽追擊問題啊,勾股定理啊,以至於秦誼看《九章算術》看得做夢回到了初中時代,剩下的那一小部分高中生的水平也可以解決。
如果說《九章算術》是《九陽真經》,那麽秦誼初中所學的幾何學那就是西方傳來的乾坤大挪移,高中學的平麵直角坐標係和三角函數那就是開宗立派的太極拳,至於大學學過的微積分,對這個時代的人來說那已經無異於修仙的真經了。
蔡邕固然才華橫溢,但是比起站在巨人肩膀上的秦誼那還是不夠看的,這也是秦誼的底氣所在。
“既然如此,那我就給你出一個題了,在屋內牆角處堆放米,米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積是多少?”看秦誼如此自信,蔡邕也是馬上給秦誼出了一個《九章算術》中的題目。
平心而論,蔡邕出的這個問題並不難,隻要知道圓錐體的體積公式就可以解這道題。《九章算術》中的題目實在太多了,而昨天蔡邕恰好剛給女兒講解到這一部分,所以直接把這一道題目給講了出來。
而聽了蔡邕的題目之後秦誼也是大喜,因為這道題目並不難,而且他還能夠以此給蔡邕一個驚喜。於是乎秦誼便從旁邊折了一根樹枝,在地上算起來這個題目。
隨著秦誼在地上寫出一連串的阿拉伯數字進行計算,也是把蔡邕給看糊塗了,他本來也沒想著讓秦誼計算出結果,隻要秦誼簡單說說做題思路便可以了。
但現在鬼畫符的秦誼,似乎想要直接算出結果來。於是蔡邕也便在那裏看著看著秦誼在那裏用豎式計算,隨著秦誼的計算,蔡邕已經隱約猜出這是一種算術方法,但是具體的意思卻還是看不明白,便在那裏默默琢磨起來。
“34立尺,米堆的體積是34立尺!”不一會兒秦誼便將計算出來的結果告知了蔡邕。
“啊?”聽了秦誼的答案之後,還在那裏研究秦誼阿拉伯數字的蔡邕也是微微一愣,這個答案似乎和之前自己計算的答案稍微有些出入。
不過蔡邕很快也是釋然,因為這個問題中需要用到圓周率,而當日蔡邕為了省事,是把圓周率當做3來計算的,甚至都沒有使用自己3.125的研究成果。秦誼與自己的計算結果稍微差了一點兒,應該是將圓周率的數值精確到了小數點之後。
“等一下,你用的圓周率似乎是三忽一三七微?”蔡邕的心算速度非常快,於是直接利用秦誼的計算結果反推了一下秦誼使用圓周率的數值,但是得出的數字卻有些令蔡邕詫異,竟然是一個並不常見的3.137,這讓蔡邕這個圓周率當世第一人也是產生了濃厚的興趣。
“蔡公,鄙人所用圓周率實際是三忽一四微,三十四立尺是四舍五入後的答案!至於這個三忽一四微,則是我自己計算出來的,我認為這個結果比您的三忽一二五微的結果更加精確!”秦誼發現蔡邕果然發現了自己給他埋下的這個彩蛋,也是堂而皇之得剽竊了幾十年後劉徽的研究成果。
劉徽,這個中國三國時代最偉大的數學家,不但利用割圓術將圓周率推算到3.14,更是世界上第一個記載小數概念的人。在劉徽的著作中他將整數稱之為忽,後麵的小數稱之為微,故此秦誼的圓周率是三忽一四微。
不過這些天秦誼苦苦鑽研了一下當世數學,發現忽微的說法現在已經有了,劉徽應該是在自己的著作中引用了現在的學術成果。
“你的圓周率是怎麽算出來的?竟敢說比我的圓周率更加精確?”雖然被秦誼說起自己研究不足,但是蔡邕並沒有太過生氣,隻是好奇秦誼是如何來的底氣。
通過剛才的簡單測試,蔡邕已經確信秦誼熟讀九章,但現在竟然指責自己的圓周率不夠精確,也是讓蔡邕有些小期待。如果秦誼真能夠說出一個所以然來,這也就意味著當世又有出一個算學大家了。
“不知道蔡公聽說過‘尺之棰,日取其半,萬世不竭’這句話沒有?”而秦誼也是正色說道,此時的他已經沒有了之前的謙卑,像是一個學者一樣對著自己的學生侃侃而談起來。
“這是《莊子·天下篇》的句子,不知道這和圓周率有什麽關係?”本來蔡邕還想著聽一個數學講座,卻是不知道為何秦誼卻是扯到了《莊子》上麵,也是有些詫異得問道。
“這句話體現的是一種極限思想,使用極限思想解題不僅可以化難為易、形象直觀,而且可以通過這種思想的運用又能加深對極限概念的認識和理解。”
聽著秦誼在這裏說著一些不相幹的話,蔡邕並沒有作聲。極限思想在數學中的確擁有很大的作用,像是圓形球形的麵積體積計算公式,都是利用極限的思想進行的解釋,還有蔡邕所不知道的微積分,都是建立在極限概念上的。
“所以圓內接正多邊形的周長和麵積,會隨著多邊形變數的增多,越來越逼近圓周長和圓麵積!”
“原來如此!”當聽了秦誼的解釋之後,蔡邕也是恍然大悟,隨即也是大喜,秦誼這麽一來,那就是把圓周率的數值又往前精確了一番,而且他還使用了一種極限思維,隻要技術成熟,還可以把圓周率繼續精確,當真是非常了不起。
“我求出圓內接正96邊形邊長和正192邊形的麵積,得到圓周率是三忽一四微;計算圓內接正3072邊形的麵積,計算出來的圓周率是三忽一四一六微。利用極限的思想還可以繼續求下去,隻是這個數值絕對不會離三忽一四微差太遠的!”劉徽割圓術的原理和方法曾經寫在秦誼初中數學課本上麵,所以他也是在過年這段時間裏提前把劉徽的計算結果算了出來。
“原來如此,沒想到當世竟然出了這麽一名算學奇才!”
當聽了秦誼的這番話之後,蔡邕竟然恭敬德向秦誼拜了一下,來表達對秦誼推算圓周率的敬意。這下子把秦誼給嚇了一跳,趕緊朝蔡邕回拜,他一個穿越者知道這些東西實在太正常了,臉皮還沒厚到坦然接受蔡邕敬意的程度。
“哇!”
一瞬之間,整個大街上麵沸騰了,天下第一才子竟然向一個名不見經傳的年輕後輩行禮,肯定是這個年輕後輩的才識征服了蔡邕蔡伯喈。
雖然圍觀之人並不明白秦誼剛才和蔡邕的這番對話,但是蔡邕的反應卻是被他們看在眼中,對很多鄰人來說,蔡邕就像是天上的文曲星一般博學多識,u看書 ww.uukanshu 能折服他的年輕人學問得多麽深厚,一時間人群陷入了竊竊私語之中,無數的人都在猜測秦誼的背景和來曆。
而邊上旁聽的蔡琰也是忍不住有些敬佩得看著秦誼,秦誼和父親的討論,一開始蔡琰還能聽得明白,但是隨著話題的進一步深入,蔡琰就有些跟不上趟了,似乎聽明白了但又似乎不明白。
但蔡琰跟不上沒關係,她轉而便去注意起父親的反應來,反正父親是肯定能夠明白的。看著父親一會兒眉頭緊鎖,一會兒頷首微笑的模樣,蔡琰知道,眼前這個帥氣的年輕人的確是有著自己的本事,竟然讓父親折服了。
雖然僅僅是在算學上麵令父親折服,但在蔡琰看來也很不容易,在某個單項上能勝過父親的人加起來恐怕也不過一手之數。就像是之前蔡邕對女兒說過的那樣,“在算學一途我隻承認劉元卓(劉洪)比我強一點兒”。
看來父親大人是找到了一個比自己更合適學算學的學生,這樣子父親就再也不用傳授自己九章了,自己就可以拿出更多的時間來彈琴寫詩了,想到這裏心情大好的蔡琰也是給了秦誼一個甜甜的笑容。
好純啊!
而蔡琰這個笑容也是把秦誼給看呆了,忍不住便產生了人生三大幻覺之一的她喜歡我。畢竟一個英俊瀟灑並且才華橫溢的男生,更容易得到女生的青睞。
——我是蔡琰備胎的分界線——
“割之彌細,所失彌少,割之又割,以至於不可割,則與圓合體而無所失矣。”——《九章算術》方田章圓田術劉徽注
作為天下第一名士,蔡邕同樣也是一個世家子弟,他們陳留蔡氏的親朋故舊遍布天下,隻要不是什麽通天難事,蔡邕都夠幫助擺平。
如果秦誼要是求財或是求名,那也是小事情。要是求財,陳留蔡氏家大業大,蔡邕本人雖然仕途不順,但是給人寫碑文的潤筆費可是不菲,可以說是窮得隻剩下錢了;要是求名,作為天下第一名士的蔡邕,隨便稱讚一句,便能夠立刻讓被稱讚者身家倍增。
“教……蔡公,我想學算學!”
有那麽一瞬間,這段時間費心盡力鑽營投機卻是屢遭白眼的秦誼差點兒三井壽附體,不過好在沒有想起《直到世界終結》的bgm,要不然秦誼恐怕直接跪在蔡邕麵前了。
“學算學!?”
當聽了秦誼這個要求之後,蔡氏父女均是非常吃驚,這些年來找蔡邕拜師的人多了去了,蔡邕也是收了不少學生,比如說日後建安七子之一的阮瑀便是其中的佼佼者。
但是這些蔡邕的學生,基本上都是跟著蔡邕學習經學、書法、辭賦、,跟著蔡邕學習算學的可是基本上沒有。所以秦誼的出現,也是讓蔡氏父女都很吃驚。
當聽了秦誼的求學宣言之後,蔡琰便忍不住打量起秦誼來,因為她知道眼前這個男人,很有可能撓到了父親的癢處。
作為當世知名數學家,蔡邕也希望自身的數學知識能夠傳下去,可惜卻是一直都沒有遇到合適的人選。才資卓絕之輩蔡邕不是沒遇到過,但是這些人還是對蔡邕其他的學識更感興趣。於是乎蔡邕的各項絕藝,基本上都有了傳人,隻有一手的算學卻是一直沒有找到合適的傳人。
尤其是年前,蔡邕老友劉洪的學生徐嶽,因為協助何顒上計的緣故來到雒陽,並按照老師的吩咐過來拜見蔡邕。
席間蔡邕考究了一下徐嶽的學問,發現他已經得到老友劉洪的真傳,更是讓蔡邕心中難過,已經五十多歲的他再不抓緊時間找傳人,那麽這一身的算學可能就要失傳了。
於是乎過年這段時間裏麵,蔡邕就開始折騰起自己的女兒來,隻是希望自己的算學能夠後繼有人。
隻可惜蔡邕的兩個女兒可能都隻遺傳到了老爹一半的基因,明顯都是些文藝女青年的體質,一開始還能夠學得懂老蔡的學問,但是隨著問題深入之後,便有些力不從心了。
老蔡心裏麵也是明白,女兒的天分雖然比不上自己,但隻要肯下功夫認真寫,不說在自己的基礎上有所發展青出於藍而勝於藍,像劉洪的學生徐嶽一樣把自己的本事給吃透還是能做到的。
隻是兩個女兒卻並不喜歡算學,缺乏那種精益求精的追求,那些入門知識憑借著各自的小聰明都很容易掌握,然後上了難度之後兩個女兒又不肯下苦功夫,自然出不了成績。
現在看到有人主動要跟父親學習算學,蔡琰也是開心不少,忍不住也是打量起秦誼來。秦誼本身賣相便不錯,再加上後世的精神灌注,倒是有一種不同於當世士子的精神氣質。
隻是蔡琰卻依舊不看好秦誼,因為算學一途實在太難了,蔡琰天資雖然及不上蔡邕,但也是出類拔萃的那種人物,到現在也隻不過將蔡邕教學用的《九章算術》給學完,離精通還是有著一定的差距。自視甚高的蔡琰並不覺得,隨便過來一個士人便能有自己的水平,這樣的人如何能夠繼承父親的衣缽。
“嗬嗬,那你基礎怎樣?”看到有人主動要向自己學算學,蔡邕心裏麵也是很高興,但是同樣沒有看好秦誼,所以想要先摸摸底。
“九章之術已經能夠熟練掌握,甚至還有其他所得!”而秦誼也是非常傲然的說道。
金庸小說中帶九的武功都非常厲害,什麽九陰真經,九陽真經,獨孤九劍之類的,而《九章算術》便是當今數學界的頂級秘籍。秦誼這個回答可以說是非常厲害,放武俠小說中那就是九陰九陽之類的武功我已經學會了,甚至還研究出了一些其他並不遜色武功。放眼天下,恐怕也就隻有蔡邕、劉洪等幾個學術巨頭敢這樣說了。
秦誼敢這樣說大話,也是有著自己的資本,就在過年這段時間裏麵,秦誼從大將軍府圖書館裏把官方修訂過的《九章算術》給借了出來,在製作曆史上第一個二胡——應該是提琴的間歇裏,把《九章算術》給通讀了一遍。
原來後世的初中生基本上便能掌握《九章算術》的大部分學問,什麽追擊問題啊,勾股定理啊,以至於秦誼看《九章算術》看得做夢回到了初中時代,剩下的那一小部分高中生的水平也可以解決。
如果說《九章算術》是《九陽真經》,那麽秦誼初中所學的幾何學那就是西方傳來的乾坤大挪移,高中學的平麵直角坐標係和三角函數那就是開宗立派的太極拳,至於大學學過的微積分,對這個時代的人來說那已經無異於修仙的真經了。
蔡邕固然才華橫溢,但是比起站在巨人肩膀上的秦誼那還是不夠看的,這也是秦誼的底氣所在。
“既然如此,那我就給你出一個題了,在屋內牆角處堆放米,米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積是多少?”看秦誼如此自信,蔡邕也是馬上給秦誼出了一個《九章算術》中的題目。
平心而論,蔡邕出的這個問題並不難,隻要知道圓錐體的體積公式就可以解這道題。《九章算術》中的題目實在太多了,而昨天蔡邕恰好剛給女兒講解到這一部分,所以直接把這一道題目給講了出來。
而聽了蔡邕的題目之後秦誼也是大喜,因為這道題目並不難,而且他還能夠以此給蔡邕一個驚喜。於是乎秦誼便從旁邊折了一根樹枝,在地上算起來這個題目。
隨著秦誼在地上寫出一連串的阿拉伯數字進行計算,也是把蔡邕給看糊塗了,他本來也沒想著讓秦誼計算出結果,隻要秦誼簡單說說做題思路便可以了。
但現在鬼畫符的秦誼,似乎想要直接算出結果來。於是蔡邕也便在那裏看著看著秦誼在那裏用豎式計算,隨著秦誼的計算,蔡邕已經隱約猜出這是一種算術方法,但是具體的意思卻還是看不明白,便在那裏默默琢磨起來。
“34立尺,米堆的體積是34立尺!”不一會兒秦誼便將計算出來的結果告知了蔡邕。
“啊?”聽了秦誼的答案之後,還在那裏研究秦誼阿拉伯數字的蔡邕也是微微一愣,這個答案似乎和之前自己計算的答案稍微有些出入。
不過蔡邕很快也是釋然,因為這個問題中需要用到圓周率,而當日蔡邕為了省事,是把圓周率當做3來計算的,甚至都沒有使用自己3.125的研究成果。秦誼與自己的計算結果稍微差了一點兒,應該是將圓周率的數值精確到了小數點之後。
“等一下,你用的圓周率似乎是三忽一三七微?”蔡邕的心算速度非常快,於是直接利用秦誼的計算結果反推了一下秦誼使用圓周率的數值,但是得出的數字卻有些令蔡邕詫異,竟然是一個並不常見的3.137,這讓蔡邕這個圓周率當世第一人也是產生了濃厚的興趣。
“蔡公,鄙人所用圓周率實際是三忽一四微,三十四立尺是四舍五入後的答案!至於這個三忽一四微,則是我自己計算出來的,我認為這個結果比您的三忽一二五微的結果更加精確!”秦誼發現蔡邕果然發現了自己給他埋下的這個彩蛋,也是堂而皇之得剽竊了幾十年後劉徽的研究成果。
劉徽,這個中國三國時代最偉大的數學家,不但利用割圓術將圓周率推算到3.14,更是世界上第一個記載小數概念的人。在劉徽的著作中他將整數稱之為忽,後麵的小數稱之為微,故此秦誼的圓周率是三忽一四微。
不過這些天秦誼苦苦鑽研了一下當世數學,發現忽微的說法現在已經有了,劉徽應該是在自己的著作中引用了現在的學術成果。
“你的圓周率是怎麽算出來的?竟敢說比我的圓周率更加精確?”雖然被秦誼說起自己研究不足,但是蔡邕並沒有太過生氣,隻是好奇秦誼是如何來的底氣。
通過剛才的簡單測試,蔡邕已經確信秦誼熟讀九章,但現在竟然指責自己的圓周率不夠精確,也是讓蔡邕有些小期待。如果秦誼真能夠說出一個所以然來,這也就意味著當世又有出一個算學大家了。
“不知道蔡公聽說過‘尺之棰,日取其半,萬世不竭’這句話沒有?”而秦誼也是正色說道,此時的他已經沒有了之前的謙卑,像是一個學者一樣對著自己的學生侃侃而談起來。
“這是《莊子·天下篇》的句子,不知道這和圓周率有什麽關係?”本來蔡邕還想著聽一個數學講座,卻是不知道為何秦誼卻是扯到了《莊子》上麵,也是有些詫異得問道。
“這句話體現的是一種極限思想,使用極限思想解題不僅可以化難為易、形象直觀,而且可以通過這種思想的運用又能加深對極限概念的認識和理解。”
聽著秦誼在這裏說著一些不相幹的話,蔡邕並沒有作聲。極限思想在數學中的確擁有很大的作用,像是圓形球形的麵積體積計算公式,都是利用極限的思想進行的解釋,還有蔡邕所不知道的微積分,都是建立在極限概念上的。
“所以圓內接正多邊形的周長和麵積,會隨著多邊形變數的增多,越來越逼近圓周長和圓麵積!”
“原來如此!”當聽了秦誼的解釋之後,蔡邕也是恍然大悟,隨即也是大喜,秦誼這麽一來,那就是把圓周率的數值又往前精確了一番,而且他還使用了一種極限思維,隻要技術成熟,還可以把圓周率繼續精確,當真是非常了不起。
“我求出圓內接正96邊形邊長和正192邊形的麵積,得到圓周率是三忽一四微;計算圓內接正3072邊形的麵積,計算出來的圓周率是三忽一四一六微。利用極限的思想還可以繼續求下去,隻是這個數值絕對不會離三忽一四微差太遠的!”劉徽割圓術的原理和方法曾經寫在秦誼初中數學課本上麵,所以他也是在過年這段時間裏提前把劉徽的計算結果算了出來。
“原來如此,沒想到當世竟然出了這麽一名算學奇才!”
當聽了秦誼的這番話之後,蔡邕竟然恭敬德向秦誼拜了一下,來表達對秦誼推算圓周率的敬意。這下子把秦誼給嚇了一跳,趕緊朝蔡邕回拜,他一個穿越者知道這些東西實在太正常了,臉皮還沒厚到坦然接受蔡邕敬意的程度。
“哇!”
一瞬之間,整個大街上麵沸騰了,天下第一才子竟然向一個名不見經傳的年輕後輩行禮,肯定是這個年輕後輩的才識征服了蔡邕蔡伯喈。
雖然圍觀之人並不明白秦誼剛才和蔡邕的這番對話,但是蔡邕的反應卻是被他們看在眼中,對很多鄰人來說,蔡邕就像是天上的文曲星一般博學多識,u看書 ww.uukanshu 能折服他的年輕人學問得多麽深厚,一時間人群陷入了竊竊私語之中,無數的人都在猜測秦誼的背景和來曆。
而邊上旁聽的蔡琰也是忍不住有些敬佩得看著秦誼,秦誼和父親的討論,一開始蔡琰還能聽得明白,但是隨著話題的進一步深入,蔡琰就有些跟不上趟了,似乎聽明白了但又似乎不明白。
但蔡琰跟不上沒關係,她轉而便去注意起父親的反應來,反正父親是肯定能夠明白的。看著父親一會兒眉頭緊鎖,一會兒頷首微笑的模樣,蔡琰知道,眼前這個帥氣的年輕人的確是有著自己的本事,竟然讓父親折服了。
雖然僅僅是在算學上麵令父親折服,但在蔡琰看來也很不容易,在某個單項上能勝過父親的人加起來恐怕也不過一手之數。就像是之前蔡邕對女兒說過的那樣,“在算學一途我隻承認劉元卓(劉洪)比我強一點兒”。
看來父親大人是找到了一個比自己更合適學算學的學生,這樣子父親就再也不用傳授自己九章了,自己就可以拿出更多的時間來彈琴寫詩了,想到這裏心情大好的蔡琰也是給了秦誼一個甜甜的笑容。
好純啊!
而蔡琰這個笑容也是把秦誼給看呆了,忍不住便產生了人生三大幻覺之一的她喜歡我。畢竟一個英俊瀟灑並且才華橫溢的男生,更容易得到女生的青睞。
——我是蔡琰備胎的分界線——
“割之彌細,所失彌少,割之又割,以至於不可割,則與圓合體而無所失矣。”——《九章算術》方田章圓田術劉徽注