隨著人工智能的逐漸興起,各大巨頭都開始涉足,趙子明自然不甘人後。
雖說小訊在虛擬世界,天下無敵,如果在人工智能上投入重金,顯得多此一舉。
但黑科技畢竟黑科技,拿不出手,台麵上的產品不但要有,更要領先。
以堂堂正正之師壓人,讓每一個人都能看到差距所在,每一次進步都讓對手無話可說。
拋開小訊不談,這也是趙子明的強項。
可以說,數字集團對於人工智能專業領域的應用,已經獨步天下。
互聯網金融的風控智能,電子遊戲領域的npc智能以及最近大火的魔力飛躍的數據處理能力,在多個方麵,數字集團已經積累了豐富的經驗,並以此為依仗,多次擊潰對手。
趙子明已經打算在現有基礎上成立兩個部門,一個專門負責核心人工智能的研發,深入推進,整合所有資源。
另一個部門負責推廣應用,把人工智能推廣給其它部門,讓所有部門使用上人工智能。
根據他的判斷,在未來,人工智能很可能如同互聯網一樣,是必需品而不是競爭力。
換句話說,企業想生存,要發展,必須有人工智能,但有了人工智能,卻不會給你帶來任何競爭優勢。
對於數字集團,趙子明一直在思考它的定位。
最近幾日,線上線下結合,廣告宣傳的輪番轟炸,已經有了“bats”的出現。
很多媒體開始將數字集團同三巨頭相提並論,稱之為互聯網新貴,獨角獸。
雖然相比其他三家,數字集團略顯不足,沒有太過明顯的標簽。
其他三家,“搜索、電商、社交”,核心優勢明顯,而數字集團沒有核心業務,太過多元、分散,競爭力上存在不足。
以鵝廠為例,社交是根本,一切業務都是以此為基礎,即使現在涉足遊戲、視頻、金融等,也是對社交的深挖,抗風險能力很強。
對比數字集團,有互聯網金融,有遊戲,有頭顯,雖然每一家都發展迅速,獲益不菲,卻沒有一個核心所在。
而想成為一家偉大的公司,世界級的企業,必須有自己的核心優勢。
趙子明有心將人工智能作為一個標簽,貼在身上,對內整合業務,對外樹立形象。
隻要提起數字集團,就想起人工智能,到了那時,趙子明覺得才能算作成功。
而人工智能可大致分為三層。
最底層是基礎技術層,包含雲計算、芯片和開源框架等。
這一層門檻很高,芯片的機會留給了英偉達、高通和英特爾等巨頭。
開源框架和雲計算則被穀歌、亞馬遜這樣的巨頭把持,趙子明想在這上麵發力,難度不小。
如果想樹立自己的標簽,成為一家國內巨頭、世界聞名的企業,就必須在核心層有所成就。
攻堅克難,逆勢而行。
不過,對於趙子明來說,雖然競爭激烈,但有黑科技在手,假以時日,他有信心,橫掃一切對手。
中間層是技術層。被外界廣為熟悉的圖像識別、語音識別等通用技術,就在這一層。
bat將這一層視作關鍵要塞,作為它們搭建生態係統的核心。
趙子明已經有了計劃,要在中間層占據一席之地。畢竟底層開源,初期形成一定的技術壁壘,還要看相關應用。
位於最上方的應用層,賽道最為寬闊,很多ai應用創業公司就在此,選擇一個垂直領域,一頭紮進去。
而對於巨頭來說,自然是讓其他創業公司先行先試,有了成果再說。
世間應用千萬,一個公司不可能也沒必要壟斷一切。
反正對於巨頭們來說,最不缺的就是錢,一旦有了適合的公司,先進的成果,買下來即可。
直到此時此刻,趙子明對於事業的發展,才算有了一個整體思路。
從得到小訊開始,他一直處於奔跑階段,那個時候隻想掙錢,不負這一番奇遇。
受限於見識,選擇網貸行業,機緣巧合進入遊戲市場,東一榔頭,西一棒槌,看似多點開花,實在浪費多多。
不過他從未後悔這段經曆,想的再好,不如行動。
隨著事業的發展,趙子明也成長很快,從最初的暴躁易怒,好色風流,到現在的城府深深,視野開闊,他付出了很多,得到了很多,也失去了很多。
趙子明通過整合公司,想擰成一股繩,多番思考,選擇人工智能作為突破點,並不被外人所看好,甚至公司內部,也有不同聲音。
每個人都知道,未來掌握在人工智能手裏,而人工智能聽著好聽,卻不是小公司的機會。
數字集團雖然也能稱得上家大業大,但和巨頭相比,體量太小,幾乎沒有威脅力。
單以人才為例,對人工智能專家的爭奪,早就陷入了白熱化程度,高薪、股權、技術壁壘等等,能拿出來,通通拿出來。
在數字集團還沒成長為一家世界性的公司,想要吸引頂尖的人才加盟,基本上沒有希望。
即使薪水豐厚,和其他巨頭公司相比,也沒有吸引力。
不過,對於趙子明來說,有固然可喜,沒有也不用沮喪。
他本來就不是全靠實力在競爭,有了黑科技,自然要彎道超車。
現階段,通用型的人工智能還不可能誕生,每一家都是選擇一個領域發力,而人工智能的厲害之處,不在於有多聰明,而是自身的學習能力。
趙子明自然不怕被人發現端倪,新生的人工智能,需要經過訓練,才能展現令人驚歎的能力。
而訓練手段無外乎熟能生巧。
通過大量的練習不斷“催熟”機器的智能程度,而這一步正是小訊發揮作用的關鍵所在。
高質量的數據集是各種複雜機器學習算法訓練的基礎。
有了算法,還需要反複學習訓練,才能派的上用場。
斯坦福大學視覺識別專家李飛飛教授,研發的圖像識別智能,就是通過1500萬張高清晰度的圖片數據庫,取得了突飛猛進的進步。
數字集團一旦有了相關算法,想要“催熟”、“應用”,就簡單的多了。
雖說小訊在虛擬世界,天下無敵,如果在人工智能上投入重金,顯得多此一舉。
但黑科技畢竟黑科技,拿不出手,台麵上的產品不但要有,更要領先。
以堂堂正正之師壓人,讓每一個人都能看到差距所在,每一次進步都讓對手無話可說。
拋開小訊不談,這也是趙子明的強項。
可以說,數字集團對於人工智能專業領域的應用,已經獨步天下。
互聯網金融的風控智能,電子遊戲領域的npc智能以及最近大火的魔力飛躍的數據處理能力,在多個方麵,數字集團已經積累了豐富的經驗,並以此為依仗,多次擊潰對手。
趙子明已經打算在現有基礎上成立兩個部門,一個專門負責核心人工智能的研發,深入推進,整合所有資源。
另一個部門負責推廣應用,把人工智能推廣給其它部門,讓所有部門使用上人工智能。
根據他的判斷,在未來,人工智能很可能如同互聯網一樣,是必需品而不是競爭力。
換句話說,企業想生存,要發展,必須有人工智能,但有了人工智能,卻不會給你帶來任何競爭優勢。
對於數字集團,趙子明一直在思考它的定位。
最近幾日,線上線下結合,廣告宣傳的輪番轟炸,已經有了“bats”的出現。
很多媒體開始將數字集團同三巨頭相提並論,稱之為互聯網新貴,獨角獸。
雖然相比其他三家,數字集團略顯不足,沒有太過明顯的標簽。
其他三家,“搜索、電商、社交”,核心優勢明顯,而數字集團沒有核心業務,太過多元、分散,競爭力上存在不足。
以鵝廠為例,社交是根本,一切業務都是以此為基礎,即使現在涉足遊戲、視頻、金融等,也是對社交的深挖,抗風險能力很強。
對比數字集團,有互聯網金融,有遊戲,有頭顯,雖然每一家都發展迅速,獲益不菲,卻沒有一個核心所在。
而想成為一家偉大的公司,世界級的企業,必須有自己的核心優勢。
趙子明有心將人工智能作為一個標簽,貼在身上,對內整合業務,對外樹立形象。
隻要提起數字集團,就想起人工智能,到了那時,趙子明覺得才能算作成功。
而人工智能可大致分為三層。
最底層是基礎技術層,包含雲計算、芯片和開源框架等。
這一層門檻很高,芯片的機會留給了英偉達、高通和英特爾等巨頭。
開源框架和雲計算則被穀歌、亞馬遜這樣的巨頭把持,趙子明想在這上麵發力,難度不小。
如果想樹立自己的標簽,成為一家國內巨頭、世界聞名的企業,就必須在核心層有所成就。
攻堅克難,逆勢而行。
不過,對於趙子明來說,雖然競爭激烈,但有黑科技在手,假以時日,他有信心,橫掃一切對手。
中間層是技術層。被外界廣為熟悉的圖像識別、語音識別等通用技術,就在這一層。
bat將這一層視作關鍵要塞,作為它們搭建生態係統的核心。
趙子明已經有了計劃,要在中間層占據一席之地。畢竟底層開源,初期形成一定的技術壁壘,還要看相關應用。
位於最上方的應用層,賽道最為寬闊,很多ai應用創業公司就在此,選擇一個垂直領域,一頭紮進去。
而對於巨頭來說,自然是讓其他創業公司先行先試,有了成果再說。
世間應用千萬,一個公司不可能也沒必要壟斷一切。
反正對於巨頭們來說,最不缺的就是錢,一旦有了適合的公司,先進的成果,買下來即可。
直到此時此刻,趙子明對於事業的發展,才算有了一個整體思路。
從得到小訊開始,他一直處於奔跑階段,那個時候隻想掙錢,不負這一番奇遇。
受限於見識,選擇網貸行業,機緣巧合進入遊戲市場,東一榔頭,西一棒槌,看似多點開花,實在浪費多多。
不過他從未後悔這段經曆,想的再好,不如行動。
隨著事業的發展,趙子明也成長很快,從最初的暴躁易怒,好色風流,到現在的城府深深,視野開闊,他付出了很多,得到了很多,也失去了很多。
趙子明通過整合公司,想擰成一股繩,多番思考,選擇人工智能作為突破點,並不被外人所看好,甚至公司內部,也有不同聲音。
每個人都知道,未來掌握在人工智能手裏,而人工智能聽著好聽,卻不是小公司的機會。
數字集團雖然也能稱得上家大業大,但和巨頭相比,體量太小,幾乎沒有威脅力。
單以人才為例,對人工智能專家的爭奪,早就陷入了白熱化程度,高薪、股權、技術壁壘等等,能拿出來,通通拿出來。
在數字集團還沒成長為一家世界性的公司,想要吸引頂尖的人才加盟,基本上沒有希望。
即使薪水豐厚,和其他巨頭公司相比,也沒有吸引力。
不過,對於趙子明來說,有固然可喜,沒有也不用沮喪。
他本來就不是全靠實力在競爭,有了黑科技,自然要彎道超車。
現階段,通用型的人工智能還不可能誕生,每一家都是選擇一個領域發力,而人工智能的厲害之處,不在於有多聰明,而是自身的學習能力。
趙子明自然不怕被人發現端倪,新生的人工智能,需要經過訓練,才能展現令人驚歎的能力。
而訓練手段無外乎熟能生巧。
通過大量的練習不斷“催熟”機器的智能程度,而這一步正是小訊發揮作用的關鍵所在。
高質量的數據集是各種複雜機器學習算法訓練的基礎。
有了算法,還需要反複學習訓練,才能派的上用場。
斯坦福大學視覺識別專家李飛飛教授,研發的圖像識別智能,就是通過1500萬張高清晰度的圖片數據庫,取得了突飛猛進的進步。
數字集團一旦有了相關算法,想要“催熟”、“應用”,就簡單的多了。